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ARTICLE INFO ABSTRACT

Am'cfe History: Pedicle screws are used in spinal fusion for the stabilisation of the spine through a posterior approach. In spi-
Received 4 June 2021 nal deformities, such as scoliosis, pedicle screw placement is especially challenging due to vertebral rotation
Revised 22 June 2021 and landmark distortion. Conventional surgical procedures such as Free-hand screw insertion mainly rely on
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surgeon experience and anatomical landmarks. Image- and robot-guided pedicle screw insertion can
improve placement accuracy but require exposure to ionising radiation. Studies of 3D-printed patient-spe-
cific surgical guides (PSSG) have shown similar accuracy rates and reduced intra-operative radiation. Never-
theless, the guide design and workflow of these devices present significant challenges.
This manuscript presents a narrative review of the literature regarding the analysis of designs, manufactur-
ing, and technical considerations for patient-specific screw guides (PSSG). We focus on the analysis of imag-
ing criteria, design variables (including spinal levels, anatomical landmarks and guiding tools),
manufacturing technology, 3D-printing technology and validation studies (ex vivo and in vivo). We also dis-
cuss the clinical and economic benefits of PSSGs and provide further dialogue on the limitations and require-
ments for better adoption of this technology in future.
Compared to Free-hand pedicle screw placement, we find that PSSGs show consistently superior placement
accuracies and when compared to image and robot-guided technologies, their use requires less radiation
exposure, shorter operative times and economic benefits. The guides are of additional use in cases of complex
spinal deformities, especially if guided technologies are not available.
© 2021 University College London. Published by Elsevier Masson SAS. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/flicenses/by-nc-nd/4.0/)
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after the appearance of guided technologies [5]. In Free-hand inser-
tion, the surgeon determines the screw trajectory based on anatomi-
cal landmarks, medical images and surgical experience. In patients
with spinal deformity, identification of anatomical landmarks is chal-
lenging and the suboptimal placement of screws can result in neuro-
logical deficit through injury to the spinal cord or nerve roots [6-9].

Abbreviations

PSSG Patient-Specific Surgical Guides
MIS  Minimal Invasive Surgery

1. Introduction

Spinal fusion procedures are used to treat a variety of spinal con-
ditions including deformity correction. It is the most common and
effective procedure for spinal stabilisation [1-4]. One of the most crit-
ical points is the insertion of the screws within the pedicles, espe-
cially in scoliosis patients where the anatomy is rotated in multiple
axes. Free-hand screw insertion has remained the gold standard even
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Free-hand pedicle screw insertion has been reported to carry a
misplacement rate of between 5 and 40% [ 10]. In addition, it is highly
dependent on the surgeon's experience. Image and robotic guided
pedicle screw insertion have a significantly lower screw misplace-
ment rate of between 3 and 11% [11-14] but their cost-effectiveness
in spinal surgery is still not clear [15-17]. Furthermore, changes in
patient position from the initial CT coordinates registration lead to
inaccuracies and mandate additional image acquisition. Despite this,
robotic and image-guided technologies are reducing radiation expo-
sure [18], but the clinical benefits are yet to be evaluated in paediatric
patients [19,20]. Total radiation burden is a concern in young spinal
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Fig. 1. Diagram flow of the study selection.

deformity patients as continuous radiation exposure will be required
during follow up assessments [21-25] and future revision surgeries
[6,22,24]. The incidence of secondary malignancies amongst scoliotic
patients due to medical imaging radiation exposure is becoming
more evident [21,23,26-28]. To overcome the above aforementioned
disadvantages of the different pedicle screw insertion techniques,
several groups have been developing 3D printed patient-specific sur-
gical guides (PSSG). These studies suggest that PSSGs for pedicle
screw insertion offer a potential alternative to the image and Robot
guided technologies, by eliminating the need for intra-operative radi-
ation exposure and providing comparable pedicle screw insertion
accuracies [29-33].

In this review, we aim to translate the engineering features to
clinicians and clinical considerations to engineers. We critically ana-
lyse the design and development workflows including detailed analy-
sis of image acquisition, processing criteria, design variables (guiding
tools, contact, anatomical landmarks), 3D printing considerations
(different technologies, materials and cost) as well as testing and vali-
dation in vitro, in vivo and the clinical environment. We also consider
the clinical and economical benefits of PSSGs based on the available
literature and provide further discussion on the limitations and
requirements for better adoption of this technology in the future.

2. Methodology

We comprehensively search the Ovid, PubMed, Web of Science
databases using a combination of the following keywords: Patient-
specific, guide, spine, 3D printing, scoliosis, rapid prototyping, addi-
tive manufacturing, templates, jig, pedicle screw, spine deformity
and spinal fusion. The review focuses on patient-specific 3D printed
drilling guides or templates utilised exclusively for pedicle screw
insertion during posterior spinal approaches. The following studies
were excluded, those that:

(a) did not use 3D printing technologies;
(b) were in languages other than English or where an English transla-
tion could not be found;

(c) focused on other surgical guides such as cutting guides or fracture
repair;

(d) developed guides for veterinary applications;

(e) technical notes or publications where accuracy data was not pro-
vided;
(f) do not have any explicit link to spinal deformity.

A total of 133 studies were initially identified. A total of 49 publi-
cations met the inclusion and were included in this review (as shown
in Fig. 1).

Articles were later classified according to 1. Study design (Speci-
men, level and number of screws). 2. Design factors (CT slice thick-
ness, anatomical landmarks, contact, guiding tools and material and
3D printing technology used) summarised in Table 1A and 4A, 3. Out-
comes (cost operative time, intra-surgical radiation, accuracy Guides
and Free-Hand) summarised in Table 1B and 4B.

3. Results & discussion

Two types of PSSG for pedicle screw insertion were reported in
the literature. The most commonly reported approach in the litera-
ture are those for use during open surgery (Table 1A and 1B) whilst a
smaller number of studies describe PSSGs for minimally invasive
approaches (Table 4A and 4B).

3.1. Design and manufacturing workflow of a 3D printed patient-
specific surgical guide for pedicle screw insertion

Design manufacturing of patient-specific pedicle screw guides fol-
lows a standardise workflow as shown in Fig. 2. This workflow com-
promises of 6 key steps, which include 1. Image acquisition, 2. Image
reconstruction, 3. Pre-surgical planning and 4 Device design, 5. 3D
printing manufacturing, 6. Testing & validation. We will look at each
of these steps in detail and discuss them in relation to current litera-
ture in the following sections (Fig. 2).
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Fig. 2. Design and manufacturing workflow of a 3D printed patient-specific guide for pedicle screw insertion.

3.1.1. Image acquisition

Image acquisition is the first step in PSSG design. Computer Tomog-
raphy (CT) is the preferred imaging method for the basis of PSSG devel-
opment due to its ability to delineate bone from soft tissue at high
resolution. The imaging parameters required vary based on the CT scan-
ner used. The most common parameter for CT image acquisition based
on previous publications include pixel matrix (0.35 mm), slice thickness
(0.625 mm), no gantry tilt, the smallest field of covering the region of
interest, with no file reformatting and exported as uncompressed
DICOM files [34-36]. Additionally, it is necessary to pay attention to
some fundamental common errors during CT scanning acquisition like
the signal to noise ratio, patient movement, limited Field of View (FOV)
and distortion [34,37,38]. Hence, 3D reconstructions must be super-
vised by a specialised surgeon and radiologist to distinguish bony mal-
formations related to the patient pathology from imaging artefacts that
compromise image quality.

3.1.2. Image reconstruction

This is the second step in PSSG design. After image acquisition, 3D
model generation from DICOM data is performed by the process of
segmentation and 3D reconstruction. Segmentation and 3D recon-
struction can be automated with standardised CT acquisitions but in
patients undergoing revision surgery the artefact from metalwork
necessitates manual segmentation or corrections to be applied. Com-
mon pitfalls are over segmenting or under segmenting the regions of
interest. For this, it is advised to follow the Hounsfield Units (Hu) for
bone as a reference. Various open-source (3D Slicer, OsiriX) and com-
mercial software (Simpleware Scan-IP, Mimics, Rhino3DMedical) are
reported in the literature for image segmentation and reconstruction.
Image segmentation and reconstruction is a critical step as it lays the
foundation for subsequent screw guide design, conformity to the
bone and ultimately the overall accuracy of screw placement.

3.1.3. Pre-surgical planning and CAD modelling

Virtual surgical planning allows the surgeon to visualise the tra-
jectory prior to surgery. The planning can be performed either
directly by the surgeon or an engineer under surgical guidance. It is
important to differentiate between Solid modelling or Mesh model-
ling depending on the guide design (Fig. 2).

In the studies reviewed, basic designs such as anatomical shape-
based designs (Full contact guides) were performed within the seg-
mentation software or other basic mesh modelling software as they
consist of extruding the mesh of the posterior surface of the vertebra
and adding two sleeves corresponding to the screws trajectories. On
the other hand, support based surgical guides (Medium and Low con-
tact) are more complex designs requiring several Boolean operations

within solid parametric modelling software such as Solidworks or
Fusion 360. For these designs, Mesh modelling is possible although
complex Boolean operations between parts require mesh parametr-
isation (NURBS conversion), which can be performed with consider-
ably expensive software (Catia, 3-Matic). More affordable parametric
Mesh modelling software's (Rhinoceros, Blender) require custom
scripting for mesh parametrisation (Grasshopper, Phyton, C++).

3.1.4. Device design

3.1.4.1. Guiding tool. The choice of the surgical tools is based on the
spinal implant system the surgeons use, which determines the surgi-
cal technique or steps. Drilling, as a single step is preferred over mul-
tistep systems that guide screw insertion as there is no difference in
placement accuracy (ranges for Drill guide 83.33-100%, Probe guide
75-100%, Multistep guides 87.5-100%) . Some studies describe drill
guides that are used in combination with k-wires and cannulated
screw systems. Multistep guides can be time-consuming and lead to
non-concentric trajectories. Ideally, one single guide or a guide with
concentric sleeves should be utilised where both the drill and screw-
driver can be inserted. Most studies use a guide with sleeves but Jiang
et al. [39,40] [41,42] used sleeveless or hemicylinder guides which
made them compatible with any commercial spinal system and
added the possibility of modifying the trajectory in the OR.

None of the studies reviewed included information about the tol-
erances between the sleeve and the surgical tools. The tolerance is
the difference between the maximum and minimum limits of a nomi-
nal dimension. Both guide sleeves and drill will have tolerances given
by the 3D printing technology and material used. The length of the
sleeve could be variable in certain guide designs thus it is important
to keep a range of acceptable angle deviations within a determined
range of tolerances and sleeve lengths (Fig. 3A). Another important
parameter is the deviation of the surgical guide caused by the sofft tis-
sue. Angle deviations caused by the soft tissue are much greater than
those caused by the sleeve tolerances (Fig. 3B).

3.1.4.2. Contact. The ideal design needs to offer a unique fit with no
motion and minimum soft tissue dissection. Azimifar et al. classified
contact systems into Low and Full contact [43]. We added a third cat-
egory: Medium Contact (Table 2). Full contact guide design conforms
directly to the anatomy of the vertebra and requires a large amount
of bone exposure. This is both time-consuming and adds to patient
pain. Medium and Low contact approaches may overcome this but
multiple design iterations are required to ensure minimum stability.
Multi-level guides are more stable but should be used in patients
with stiff curves that have low motion between vertebrae or they could
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Formula 1 — Sleeves Angle Deviation (%) Tolerance D d Sleeve Length L Angle Deviation o

(mm) (mm) (mm) (mm) (6]

D d D 0.1(£0.05) | 2.1 2 10 0.6

@ = arctan (z) — arcsin (Z - cos(arctan (I))) 2 1.9 10 06

2.05 195 10 0.6

2 19 15 0.4

2.05 195 20 0.3

0.2(£0.1) 22 2 10 11

2 18 15 08

%} 2.1 19 20 05

r:::__;‘( 0.30(0.15) | 2.3 2 10 1.7

2 17 = 11

%:’ 2.15 1.85 20 0.9
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ST D Angle Deviation a
(mm) {mm) )

1 30 1.0
2 30 19
3 30 3.8
4 30 57
5 30 7.6

Formula 2 — Soft Tissue Angle Deviation (*)

ST -360
=77 D

Fig. 3. A.Formula 1 to calculate the maximal angle deviation (&) given the drill minimal diameter (d), the maximal inner diameter of the sleeve (D) and length of the sleeve (L).
The angle of deviation will vary depending on the manufacturing tolerance applied on the sleeve (D) or drill (d) and length of the sleeve (L).
Angle of deviation decreases for smaller tolerances and for longer sleeves (L). Examples of angle deviation for probe, screwdriver and drill.
3.B Formula 2 to calculate the angle of deviation given by the arch length (ST) of a circumference of radius (D). Arch length is the soft tissue thickness (ST) and D the distance

between two sleeves.

lead to malposition (Table 2). Unilateral guides have been designed in a
Full contact approach. A considerable number of authors have explored
the use of unilateral guides [32,33, 44-47]. K. Shah [48] used unilateral
multi-level guides. Van Brussel [49,50] also introduced the concept of
the ‘knife-edge’ which avoids the guide from slipping as well as
decreasing conformity error [29,38,50,51,53-54]. Some authors, how-
ever, have reported knife-edge designs to be less intuitive . Further-
more, in degenerative and revision cases, contact landmarks could be
destroyed reducing guide stability.

A bone-guide offset might be necessary for Full contact
approaches. Additionally, probe, drill or screwdriver tools can pro-
duce guide levering. Holding the guide during insertion or adding a
temporary fixation or handle could minimise this [51, 52]. The spinal
system tools could also serve to anchor the guide.

3.1.4.3. Anatomical landmarks. An accurate selection of anatomical
landmarks is necessary to ensure PSSG visibility and stability during
surgery. The most common surgical technique used for pedicle screw
insertion is the Free-Hand technique (FH). The landmarks that are
typically exposed during FH surgery include the lamina, facet joint,

Table 2

Contact design approaches classification. Full contact, Medium contact, Low contact
guide designs classification appearing in literature. 3D printed patient-specific guide
for pedicle screw insertion.

Contact Full contact Anatomical shape
approaches  Medium contact Support like and anatomical Contact areas
Low contact Support like Contact points

Multi level guide
Unilateral guide
Knife-edge
Temporary fixation

Fits multiple vertebrae at the same time

Fits only one side of the vertebrae

It a especial support, V-shaped

Guide fixation with k-wire or
additional screws

pars articularis and transverse process (Table 3). At least 6 contact
points are needed to limit 6 degrees of freedom (Fig. 4). To reduce the
number of supports needed for contact, designs can incorporate tem-
porary fixation methods that serve to pin the guide to the vertebra.
The choice of landmarks will determine the guide visibility and sta-
bility. Fig. 5 summarises common landmarks used following analysis
of the publications from Table 1A. Laminae, the upper part of the spi-
nous process and transverse process (TP) are among common land-
marks used for PSSG and provide greater stability during surgery.
Although the lamina is easily exposed with open approaches, it can
be hard to reproduce in the presence of metalwork. Further analysis
on this can be found in Table 3. A consistent landmark choice can
help with the design reproducibility. M. Takemoto [55] did a segmen-
tation reproducibility analysis to select the landmarks. When land-
marks are distorted for clinical reasons, alternative landmarks have
to be used, which may change the guide design significantly and their
stability should be tested before the surgery.

3.1.5. 3D printing. PSSG manufacturing is the next step once the
guide has been designed. 3D printing technology has been easily
adopted for screw guide manufacturing because of its ability to cus-
tom manufacture devices on demand. Various types of 3D printers
and materials have been used for screw guide fabrication (Tables 1 &
4). Amongst these, SLA and SLS have higher printing resolution
(~0.025 mm) compared to FFF (~0.15 mm). The desktop printers reso-
lution available in the market are lower than CT scan resolutions,
therefore resolution falls into the quality of imaging [56].

3.1.6. Testing and validation
Three types of study model have been explored to validate the
accuracy of PSSG in the literature. This involves 3D printed dry
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Table 3
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Landmarks and related features to Soft Tissue removal, exposure during Free-Hand technique, Guide landmark and CT imaging reproducibility.

1. Laminae Soft tissue removal
Free-Hand exposure

CT imaging reproducibility
Soft tissue removal
Free-Hand exposure

2. Upper part of Spinous process

CT imaging reproducibility
3.TP Soft tissue removal
Free-Hand exposure

CT imaging reproducibility
Soft tissue removal
Free-Hand exposure

4.Base of TP

CT imaging reproducibility
Soft tissue removal
Free-Hand exposure

5.nferior Articular process

CT imaging reproducibility
Soft tissue removal
Free-Hand exposure

6.Superior Articular process

CT imaging reproducibility
Soft tissue removal
Free-Hand exposure

CT imaging reproducibility

7. Sides of the spinous process

Easy

Yes

Easy (in absence of metalwork)

Difficult

The supraspinous ligament is usually preserved
C1 has no spinous process
C2-C6 can appear bifid

Hard (cartilaginous)

Easy

Not fully exposed.

Used to determine pedicle angulation in TL
Could be encroached with the ribs in severe deformities.

Easy

Easy

Used to determine pedicle angulation in TL
Small or absent in C
Could be encroached with the ribs in severe deformities.

Easy

Not easy to remove (ligaments)

Usually exposed to determine pedicle angle (L)
Broken to give access to cancellous bone (L)
Not visible in Cand T

Difficult (cartilage, osteophytes)

Difficult (ligaments)

Landmark to determine pedicle angle (L)
Broken to give access to cancellous bone (L)
Not visible in Cand T

Difficult (cartilage, osteophytes)

Easy

The midline of the spinous process shows pedicle angulation

Easy

C: Cervical, T: Thoracic, L: Lumbar.

models, cadaveric models and patients. The number of cadaveric
studies, however, remains small. All the cadaveric studies were per-
formed on specimens without spinal pathologies. The majority of
reported studies are in patients. 33 out of 47 reviewed studies were
performed in patients, with a minimum of 4 and a maximum of 813
inserted screws per study (see Table 1A). Study types included clini-
cal studies, case-studies, case-series and randomised control trials. A
variety of anatomical abnormalities from different scoliosis types
(idiopathic, congenital, neuromuscular, and syndromic), kyphosis,

>
w
(9]

=]

»%4

(s (33 (5)
0o 990gq
\V}

Fig. 4. Six Degrees of freedom. Two per view (Axial, Sagittal and Coronal).

A. TP(3), base of TP (4) and Laminae (1) provide rotational stability in the axial
plane.

B. Superior (6) or inferior (5) articular process and Laminae (1) limited sagittal
rotation.

C.Sides (7) and upper part (2) of spinous process landmark provides rotational sta-
bility in the coronal plane.

%

(6] 0 ) @ Laminae (34 publications)
P e — e/ﬁ @ Upper part of Spinous process.(27 publications)
g o © TP (Transverse process) (12 publications)

k ? @ Base of TP (6 publications)
bo % @ |Inferior Articular process (6 publications)

y @ Superior Articular process (5 publications)
@ Sides of Spinous process (4 publications)

Fig. 5. Landmarks used in the studies. Numerical classification and amount of studies
using that landmark.

degenerative diseases like spondylolisthesis, osteoporotic, arthritis,
Ossification of the posterior longitudinal ligament (OPLL), disloca-
tions and tumours and revision surgeries are investigated. Only a
handful of studies included paediatric patients, this could be due to
limited access to these patient groups and ethical reasons
[40,44,57,58].

4. Clinical and economic benefits

Table 1B and 4B summarises clinical and economic benefits based
on previous publications. However, not all studies captured clinical
and economic benefits and thus inconsistency in data collection
makes it difficult to draw definitive conclusions on PSSG benefits.

4.1. Clinical benefits

Clinical benefits of PSSG are being identified in terms of radiation
exposure, operative time and pedicle screw placement accuracy.
Below we discuss these points in detail.

4.1.1. Radiation exposure

Repeated exposure to intraoperative ionising radiation remains a
major concern for children as well as adult patients during spinal sur-
geries [21-25]. The Use of PSSG has the potential to reduce total radi-
ation exposure compared to its fellow guided technologies since a
presurgical CT scan happens once whilst an intraoperative CT is
needed for image-guided or robot-assisted procedures. These may
need to be repeated when recalibration is necessary. Nevertheless,
some intraoperative radiation is still advised especially in the early
stages of guide usage. One fluoroscopic image is recommended to
inspect the guide positioning before drilling to check the trajectories
and one for final assessment of the inserted screws. As surgical confi-
dence grows, however, this can be reduced further, making surgeries
safer in the long run. Overall, a significant reduction in the total radia-
tion exposure during spinal surgeries is reported when using the
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PSSG. In recent publications, low dose CT scan are also been explored
for guide design to reduce intra-operative ionising radiation
[29,52,53,59]. However, these studies remain limited and thus offer a
further reduction in CT radiation.

4.1.2. Operative time

Comparative and randomised studies quantified the operative
time between cases using the PSSG and Free-hand technique. Overall,
these studies show positive results reducing the 1-2 min per level or
30 min of average operative time in comparison with Free-hand
(Table 1B), while other guided methods require higher times and
human resources due to a more complex technology set-up. Overall,
time of soft tissue exposure for guide fitting can increase while the
screw placement decision making time can decrease. Significant time
could also be saved due to the decreased need for intraoperative
imaging.

4.1.3. Pedicle screw insertion accuracy using pssg

The intended use of the guides is to increase the pedicle screw
insertion accuracy compared to the Free-hand and other technolo-
gies. Although there are various grading systems, it is considered to
be clinically safe screws with a cortical breach below 2 mm. The Free-
hand anatomical trajectory is the gold standard but many other spe-
cialised trajectories that require specialisation could find their poten-
tial with the PSSG. Some spinal deformity patients have thin pedicles
and a cortical breach is inevitable. Other patients with poor bone
quality could require intended cortical breaches to enhance the pull-
out strength of the screws.

Over the experimental studies, the accuracy of the guides was
compared with the accuracy of the virtual planning used for its
design. Overall, PSSG showed accuracies over 90% of the inserted
screws while Free-hand was between 50 and 87% along with the
comparative and randomised studies (Table 1B). PSSG can improve
the accuracy and the consistency of pedicle screw insertion while
allowing the performance of specialised trajectories without the
need for extensive training to offer a more personalised surgical
treatment to the patients.

4.2. Economic benefits

Without economic benefits, it is hard for any new technology to
be adopted and translated into clinical use. It is important to look at
PSSG in terms of their cost and indirect cost saving in terms of time
saved on delivery, OR time. As some of this data is not directly docu-
mented in the literature, manufacturing cost and delivery time have
been evaluated and discussed as an indication of economical bene-
fits.

4.2.1. Cost

A variety of screw guide systems are used, it difficult to state the
actual cost per guide. However, rage can be defined between $4 up to
$500. The cost of PSSG will be dependent the number of guides to
provide together with an anatomical model to check the guide posi-
tioning if necessary. From Table 1B, is clear that cost was proportional
to the type of 3D printing technology and materials used. SLS and SLA
being more expensive compared to FFF. However, other costs include
the CT imaging and the designing cost of the engineer which are sig-
nificant cost of the design process, followed by the type of 3D print-
ing technology used and material.

As these costs vary based on geographical locations, the cost of
PSSG has the potential to be tailored to local needs and demands.
Nevertheless, the overall cost of PSSG for spinal procedures are in the
range of any implant or instrumentation. This device can have a sig-
nificant impact on healthcare providers that don't have access to
Navigation and Robotic guided technologies.

10

Annals of 3D Printed Medicine 3 (2021) 100022

4.2.2. Manufacturing and delivery time for PSSG

Manufacturing and delivery time is crucial for any patient-specific
solution, as this has a direct impact on speed and quality of care for
the patients. The design and manufacturing time varied from 4 h up
to 3 weeks based on the complexity of the case and type of guide
designs. It includes the time required for all the steps in the process
described above including imaging acquisition and reconstruction,
pre-surgical planning, design and manufacturing, sterilisation, and
delivery. There is no consistency in reporting of this data in the litera-
ture and thus direct comparison is unavailable. Nevertheless, if the
PSSG are designed and manufactured at the hospital can significantly
save time in data collection, virtual surgical planning validation and
delivery.

5. Future direction
5.1. Role of minimal invasive PSSG

Surgeons that seek to minimise tissue trauma undergo specialised
training in minimally invasive surgery (MIS) and MIS PSSG have been
described (Table 4A and 4B). The Australian company Anatomics has
taken the lead with their system SpineBox [60]. However, this remains
largely an unexplored area. MIS PSSG have the potential to improve
the accuracy rates and decrease radiation exposure similar to poste-
rior open surgery screw guides, although further studies are needed
in this area.

5.2. Automation of pre-surgical planning and guides CAD modelling
process

PSGS are custom made medical devices, they are made on an indi-
vidual basis for every patient. Custom design is a time-consuming
process and requires advanced planning. There is potential to save
significant time during the virtual surgical planning phase which is
an important step necessitating close communication between engi-
neering and surgical teams. Screw trajectory automation during vir-
tual surgical planning can shorten the development time of the PSSG
|61-64]. Artificial intelligence (Al) can play a vital role during this
process. The algorithms are based on deep learning of previous sur-
geons performance [65] or intrinsically based on the anatomical fea-
tures of each vertebra [66]. Algorithms based on deep learning of
previous successful surgical performance are able to suggest multiple
solutions but are highly dependent on the quality of data. Algorithms
based on statistical shape analysis of each vertebrae are more precise
but they require a higher degree of manual programming and initiali-
sation [67,68]. Both of these approaches are feasible and can provide
faster surgical planning and guide design. However, further research
and a close collaborative approach between the surgeon, computer
scientist and biomedical engineer are required to develop this
approach.

As mentioned in Section 3.1.3 affordable parametric Mesh model-
ling software's (Rhinoceros, Blender) require custom scripting (Grass-
hopper, Phyton, C++) to work with bigger meshes and only
parametrise what is of interest. This allows the design of several sur-
gical guides at the same time enabling a semi-automation of the CAD
modelling process, which could significantly improve the design time
and thus engineering cost for PSSG.

6. Conclusion

PSSG for pedicle screw insertion are a new technology emerging
from the 3D printing revolution that started over a decade ago. They
are an alternative to image-guided and Robotic Guided pedicle screw
insertion. The design of these Surgical Guides is especially challeng-
ing compared to other analogue equivalents in other joints of the
musculoskeletal system due to the complex posterior bony surfaces
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of the spine, the risk of neurological damage and the number of guides
required for a single intervention. Furthermore, PSSG is dependent on
multipletechnologies thatwerelimiting their furtherdevelopment.The
requiredamountofcomputational powerand engineering time haskept
the PSSG behind the image-guided technologies (CT guided and fluoro-
scopic).Ascomputergraphicshasbeenevolving,fasterandmoreaccurate
software have emerged for CAD mesh modelling. In parallel, CT medical
imaging has been increasing the quality of image generation and opti-
mised the radiation doses since it became widely available in the '80s.
Hencewiththeupcomingartificialintelligence,automation of processes
willspeeduptheworkflow.

This review shows that the PSSG has now been used in an exten-
sive range of spinal pathologies. Although it remains uncertain
whether guides can be used on osteoporotic, tumour or fracture cases
where the bone quality can cause poor image acquisition and if it can
withstand the applied forces of the guide onto the bone [47,59,69].
PSSG has been efficiently used in specialised screw trajectories at the
cervical level, cortical trajectories and even in paediatric patients
with severe deformities [38,54,70]. The guides have reported a bene-
fit in complex spinal deformities that require guided technology,
reaching consistent accuracy rates on the range of Navigation and
Robotic techniques. One of the major advantages that PSSG have is
that the surgical planning is done before the surgery, minimising
fatigue, decision making and surgical time which is one of the signifi-
cant costs in secondary care. This technology is more economical
than other guided technologies, being on the price range of surgical
instrumentation that will not represent an impact on the hospital's
budget while saving in other areas like intraoperative imaging.

However, among the limitations, once manufactured, it is not pos-
sible to change the planned trajectory for PSSGs intraoperatively,
although multiple sleeves trajectories could be designed to mitigate
this problem. Also, it is vital to re-evaluate the standard surgical care,
so that fluoroscopic shots pre and post-operatively do not surpass a
pre-operative CT radiation necessary for manufacturing the guides.
Similar to other navigation technologies, surgeons still need to follow
their clinical expertise to insert the screws, however, the learning
curve could be shortened.

While there are clear clinical and economic benefits, most pub-
lished studies are case reports and further multicentral randomised
trials to quantify surgical time and cost benefits of this technology
will solidify its place in spinal surgery.
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