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Abstract: In x-ray phase contrast imaging (XPCI) using the edge illumination method (EI),
crosstalk (XT) between adjacent pixels due to, e.g., light diffusion in the scintillator in indirect
conversion detector systems is an issue that blurs images and reduces both image sharpness
and quantitative accuracy. We provide a detailed mathematical description of this phenomenon
and propose two independent methods to mitigate its negative effects. The effectiveness of
these techniques is demonstrated through both simulated and experimental data, showcasing the
improvements in image quality and quantitative accuracy. In particular, the experimental data
include an intact mouse skull where soft tissue details of the brain are visualized and improved
with the proposed deconvolution methods; to the best of our knowledge, details of the murine
brain structure inside an intact skull had not been observed before with laboratory-based XPCI
systems.
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1. Introduction

X-ray phase contrast imaging (XPCI) is a technique that enhances the visibility of details in
x-ray images by utilizing the phase shifts that occur as x-rays pass through an object, rather
than conventional attenuation-based mechanisms. This shift enhances image visibility, revealing
details traditionally considered invisible to attenuation-based imaging. The superior sensitivity of
XPCI stems from refractive effects, which are driven by a physical parameter (the unit decrement
of the real part of the refractive index δ) approximately three orders of magnitude larger than
that responsible for attenuation (the refractive index imaginary part β). This is particularly
advantageous in distinguishing objects with similar attenuation coefficients [1], and in fact XPCI
has demonstrated its potential in fields ranging from medical imaging [2–6] to material science
[7], biology [8], and beyond.

Edge illumination (EI) is an XPCI technique originally developed in the late 1990s, at the
Elettra Light Source in Trieste, Italy [9]. EI systems employ a dual-mask configuration: a sample
mask (M1) positioned upstream of the sample subdivides the x-ray beam into multiple individual
beamlets, and a detector mask (M2), aligned with the detector pixels and creating insensitive
regions between them, analyses changes in the beamlets (especially their direction) caused by the
interaction with the sample.

In EI systems, the M2 apertures are positioned to illuminate the center of the pixels while
obscuring the edges.
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Like most x-ray imaging techniques, EI is affected by pixel crosstalk (XT), i.e., signal spillover
into adjacent pixels caused by, e.g., light diffusion in the scintillator in indirect conversion
detectors and charge sharing in direct conversion ones. This causes a smoothing of the refraction
peaks in raw images, that affects the quantitativeness of subsequent phase retrieval procedures.
The effect of XT can be mitigated by using skipped-mask apertures, in which case the apertures
of both M1 and M2 illuminate every other pixel [10,11]. However, some degree of leftover XT is
often still observed also in this case. Deconvolution methods can be used to reduce this residual
XT. For example, Olivo and Speller [12] employed a deconvolution algorithm with Wiener filter
to remove XT from images obtained with a different XPCI method, called free-space propagation
[13], thereby sharpening the phase signal and enhancing spatial resolution, albeit at the cost of
increased overall image noise. Havariyoun et al. [11] studied the effect of XT on the Modulation
transfer Function of EI systems when skipped and non-skipped mask are employed. Ignatyev et
al. [14] showed that the skipped mask EI architecture reduced XT from ∼49% to ∼6% with a 50
µm pixel indirect conversion flat panel detector, and assumed the latter to be a negligible amount
of XT. They also demonstrated that, when a resolution-enhancement method termed "dithering"
is employed, where multiple frames are acquired and combined while the sample is laterally
moved in sub-pixel steps, XT is responsible for creating secondary fringe-like artifacts in the
resulting images.

In this paper, we show mathematically how skipped-mask architecture EI systems are affected
by XT, resulting in a reduction in spatial resolution, edge-doubling effects, and blurring. To
address this, we propose two variants of a Fourier-based deconvolution algorithm: the first
employs a high-frequency filter, while the second is based on circulant matrices. Notably, the
second approach enhances image quality without introducing any noticeable increase in image
noise. Our analysis is supported by testing the deconvolution models on both simulated and
experimental data, clearly demonstrating improvements in image quality without negative effects
from the typical noise amplification issues associated with deconvolution algorithms.

2. EI projections and retrieval

In EI systems, a bell-shaped curve referred to as "illumination curve" is obtained by scanning one
mask (typically M1) while the other is kept still; this is usually approximated with a Gaussian
function, and we will represent it as a function of the variable t. We will also denote the analyzed
detector row of pixels as x. The raw intensities measured at the detector, for all points on the
acquired illumination curve, will be referred to as raw projections.

In particular, a raw projection as a function of t and x can be represented as a Gaussian function
with an offset [15,16]:

P0
F(x, t) = AF(x)e

−
(t−BF (x))

2

2CF (x)2 + DF(x) (1a)

P0
S(x, t) = AS(x)e

−
(t−BS(x))

2

2CS(x)2 + DS(x) (1b)

where subscripts ’F’ and ’S’ refer to objects related to the projections without and with sample,
respectively, P0 represents the raw projection, A(x) and C(x) are used to calculate the attenuation,
B(x) accounts for the shift of the illumination curve caused by sample refraction, the standard
deviation C(x) is used to estimate the scattering within the illuminated sample, and D(x) represents
the offset of the Gaussian, encoding factors such as mask transmittance, long tails in the source
distribution, scattering from air, etc. It is worth noting that Eqs. (1a) do not include the PSF;
however, the Gaussian assumption remains valid by assuming an extended source having a
Gaussian spatial distribution [15]. Notably, in most EI systems D(x) is at least an order of
magnitude smaller than A(x). These raw projections are instrumental in the estimation of δ and
β, which define the complex refractive index in x-ray energies η = 1 − δ + iβ, with δ>0 [17].
In EI systems, the retrieved quantities are Iβ (xs) :=

∫ z2
z1
β (xs, z) dz and Iδ(xs) =

∫ z2
z1
δ (xs, z) dz,
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along with the scattering signal [15,18], which is not discussed in this article, where Mag is
the magnification of the system and the variable xs =

x
Mag denotes the demagnified transverse

coordinate in the sample space. These line integrals are ideally extended over the region bounded
by the axial coordinates of the M1 (z1) and the M2 (z2), by considering that β(xs, z) and δ(xs, z) are
approximately zero outside the sample. Here, β(xs, z) and δ(xs, z) represent the distributions of β
and δ, respectively, within the plane parallel to the axial direction and containing to the detector row
of pixels being analyzed. Iβ(xs) and Iδ(xs) are derived from the transmittance T(xs) ≈ e−2k0Iβ (xs)

and the illumination curve shift measured at the detector ∆d
t = zod

∂
∂xs

Iδ(xs) [16,18], respectively,
k0 is the average wavenumber of the source spectrum and zod is the distance from the sample to
the detector. Assuming that the illumination curve variable t is sampled at M1, the shift ∆d

t is
demagnified [19], resulting in BS(x) − BF(x) = BS(Mag xs) − BF(Mag xs) =

∆d
t

Mag =
zod

Mag
∂
∂xs

Iδ(xs).
It is important to note that these definitions are approximations rather than exact representations,
as they neglect the effects of the source’s polychromaticity by substituting it with the averaged
wavenumber of the spectrum. This approximation is necessary because quantitative phase
imaging systems cannot be accurately described using the concept of effective energy, as shown
by Munro and Olivo [20]. T(x) is estimated as the ratio of the intensity reaching the detector
pixel x for the sample and flat projections. This is calculated by averaging the projections over
the illumination curve, expressed as T(x) =

∫ ∞
−∞(P

0
S(x,t)−DS(x))dt∫ ∞

−∞(P
0
F(x,t)−DF(x))dt

=
√

2πAS(x)CS(x)√
2πAF(x)CF(x)

, where the offsets
DS(x) and DF(x) have been removed, as they are considered negligible.

Then, the information about β and δ at the M1 space can be retrieved as follows:

Iβ(xs) = −
1

2k0
log

(︃
AS (Mag xs)CS (Mag xs)

AF(Mag xs)CF(Mag xs)

)︃
(2a)

Iδ(xs) =
Mag
zod

∫ xs

−∞

(︃
BS

(︁
Mag x′s

)︁
− BF

(︁
Mag x′s

)︁ )︃
dx′s (2b)

The final distributions β(xs, z) and δ(xs, z) are obtained by applying the inverse Radon transform
to Eq. (2a) and Eq. (2b), respectively, after acquiring multiple measurements at different rotation
angles applied to the sample, usually covering a full 360-degree range.

3. Fast-Fourier transform based deconvolution

In this section, we describe the deconvolution algorithm we applied to the EI images, which is a
standard Fourier transform based deconvolution algorithm, with additional precautions to ensure
robustness and mitigate noise amplification during deconvolution.

Let G(x) := 1
σ
√
π

e−
x2
σ2 represent the point spread function (PSF) of the detector as a function

of the spatial coordinate x. The raw projections, accounting for the XT effect, are given by:

PF(x, t) = P0
F(x, t) ∗ G(x) (3a)

PS(x, t) = P0
S(x, t) ∗ G(x) (3b)

where the symbol * denotes the convolution operator.
In Fig. 1 we present examples of the retrieved refraction for different PSF widths, where σ is

the standard deviation of G(x). The simulations were performed using the EI simulator developed
by Vittoria et al. [21]. We performed a monochromatic simulation at 21 keV with an extended
source modeled as a Gaussian profile with Full Width at Half Maximum (FWHM) of the focal
spot of 70µm. Four points were sampled along the simulated illumination curve, corresponding
to 18%, 57%, 100% and 38% of its maximum. The source to M2 and source to M1 distances were
set to 0.87 m and 0.68 m, respectively, resulting in Mag ≈ 1.28. The aperture sizes of M1 and
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M2 were set as 10µm and 17µm, respectively. To simulate a skipped detector mask, every other
pixel was obscured, meaning only alternating pixels were active. Apart from the PSF standard
deviation σ, these simulation parameters match those used for acquiring x-ray projections of the
plastic rod sample described in section (5.1). In particular, the plot shows the term BS(x) − BF(x)
before integration. It is evident that the convolution acts as a smoothing function on the retrieved
refraction as a function of the pixel row x. From Eqs. (3) we can derive explicitly P0

S(t; x) and
P0

F(t; x) using the Fourier transform:

F
{︁
P0

F(x, t)
}︁
(ν) =

F {PF(x, t)} (ν)
F {G(x)} (ν)

=⇒ P0
F(x, t)(ν) = F −1

{︃
F {PF(x, t)} (ν)
F {G(x)} (ν)

}︃
(4a)

F
{︁
P0

S(x, t)
}︁
(ν) =

F {PS(x, t)} (ν)
F {G(x)} (ν)

=⇒ P0
S(x, t)(ν) = F −1

{︃
F {PS(x, t)} (ν)
F {G(x)} (ν)

}︃
(4b)

where F {f (x)} (ν) =
∫
R

f (x)e−i2πxνdx is the Fourier transform of the function f (x) evaluated at
frequency ν. Using the right-hand side of equations Eq. (4a) and Eq. (4b) we obtain simple
analytical solutions to remove the XT. However, as the denominator terms F {G(x)} (ν) approach
zero for |ν |>>1, the results can become highly noisy and ultimately impractical. To address this
issue, we introduced a filter to reduce the noise in the signal:

P0(x, t) = F −1
{︃
F {P(x, t)} (ν)
F {G(x)} (ν)

χ
(︁
|ν | ≤ M

)︁
+ τF {P(x, t)} χ

(︁
|ν |>M

)︁}︃
(x) (5)

where the parameter τ is a constant introduced to ensure continuity in the spectral function within
the inverse Fourier transform operator in Eq. (5). This prevents abrupt transitions that could
otherwise introduce ringing artifacts in the spatial domain after applying F −1{.}. The constant
M represents the upper bound of the frequencies involved in the deconvolution. The symbol χ(.)
is the Heaviside function.

Fig. 1. Example of four simulated refraction signals with PSFs having different standard
deviations σ.
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Fig. 2. Comparison of CT reconstructions of a simulated plastic cylinder: the plots a) and
c) show results with the deconvolution algorithm applied, while plots b) and d) show results
without deconvolution. The bottom plots provide zoomed-in views of the corresponding top
plots, focusing on a region at the cylinder’s edge.

On the one hand, the introduction of the filter reduces noise; on the other hand, it limits the
range of the spectrum actively contributing to the deconvolution, leading to a loss of accuracy.
A larger M allows for improved deconvolution procedure and also amplifies noise, indicating
the need for a trade-off between noise amplification and deconvolution effectiveness. Through
heuristic analysis, we found that setting M equal to 30% of the maximum magnitude of the
spectrum’s Fourier transform effectively prevents noise amplification. However, this approach
results in a weakened deconvolution, as we will show in section (4.2). Once both the flat
and sample projections have been deconvolved using Eq. (5), they can be fitted with Gaussian
functions to retrieve the terms A, B, C and D, which will be used in the retrieval process described
in Eqs. (2).

It should be noted that the application of the PSF to the projections in Eq. (1) has non-linear
effects on all the terms A, B, C and D, which make the deconvolution a non commutative operator
in this instance. A common erroneous practice is to deconvolve only the sample projections,
assuming that the flat field is constant. However, this is not accurate, as there are significant
variations in P0

F as a function of x, making this assumption imprecise as well. In Fig. 2 we show
the slice corresponding to projections of a plastic cylinder, simulated using a Fourier optics-based
approach developed by Vittoria et al. [21], where the sample is characterized by a certain spatial
distribution of δ and β. For this simulation, we set δ = 6 × 10−7 and β = 3 × 10−10. Figure 3(a)
shows the values of δ resulting from the CT reconstructions for the central horizontal row of
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Fig. 3. a) Plot of the central horizontal line of pixels extracted from the simulated slices
shown in Fig. 2. b) Relative error versus the δ values estimated without XT, plotted on a
log scale for better readibility. c) Zoom-in on the light-green box in a). d) Zoom-in on the
dark-green box in a).

pixels extracted from the cylinder shown in Fig. 2, for four different representations of the same
sample. The black dashed line represents the ground truth δ, referred to as the "real" value, which
was used as input for the simulation. The yellow line shows the CT reconstruction when no XT
was introduced in the simulation, labeled as "no-XT." The red line represents the simulation in
which XT was introduced via convolution with a Gaussian-shaped PSF. The distances between
the source and M1 and source and M2, the energy level and the illumination curve were set were
set according to the simulation described in Fig. 1. To enhance image details, 16 dithering steps
were applied. The PSF standard deviation σ was set to 100µm. This larger σ was intentionally
chosen to evaluate the algorithm under increased crosstalk conditions and corresponds to the
distance between two adjacent apertures in a skipped-mask setup with a pixel size of 50 µm. This
case is labeled as "XT" in Fig. 3. The blue line represents the CT reconstruction of the simulation
with XT, where the XT was then removed using a deconvolution algorithm; this case is labeled
"deconv." In Fig. 3(b), the relative errors are plotted for the "XT" and "deconv" cases compared
to the "no-XT" case, represented by the red and blue lines, respectively, on a logarithmic scale.
To smooth the lines and improve the readability of the plot, a moving average of 10 pixels in
the x-direction was applied. Additionally, only the region surrounding the simulated cylinder
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is shown. The relative error in the "XT" case is notably higher at the edges of the cylinder,
corresponding to pixels near 3.3 mm and 5.8 mm on the x-axis, ranging from approximately twice
to an order of magnitude greater than that of the "deconv" case. This improved performance
of the "deconv" case is further illustrated in Fig. 3(c) and Fig. 3(d), which provide zoomed-in
views of the light green and dark green boxes in Fig. 3(a), respectively. In both zoomed-in plots,
the "deconv" case remains closer to the "no-XT" case than the "XT" case, albeit with some
perturbations introduced by the deconvolution algorithm.

As can be expected, this behavior indicates that XT causes blurring in the CT reconstructions,
even when skipped masks are used. This will be further analyzed in the following sections.

The practical and efficient implementation of the deconvolution approach described above
is performed by using the Fast-Fourier transform (FFT). From now on, we will describe this
deconvolution approach as FFT-deconvolution.

4. Circulant matrix deconvolution

In this section, we demonstrate that applying projection deconvolution to a small number of
pixels in each row improves the algorithm’s robustness and reduces its susceptibility to noise. To
explain this method, we represent the signals in their real, discrete form, as arrays of numbers
where each value corresponds to the number of photons recorded by each pixel. In particular, the
discrete version of Eqs. (1), are:

P0
F[i, j] = AF[i]e

−
(t[j]−BF [i])

2

2CF [i]2 + DF[i] (6a)

P0
S[i, j] = AS[i]e

−
(t[j]−BS[i])

2

2CS[i]2 + DS[i] (6b)

where i and j are indices representing the pixel position and the points acquired along the
illumination curve, respectively. The discrete version of the convolution described in Eqs. (3)
can be expressed as a multiplication with a circulant matrixMG, as:

PF[i, j] =
N∑︂

k=1
MG[i, k] · P0

F[k, j] (7a)

PS[i, j] =
N∑︂

k=1
MG[i, k] · P0

S[k, j] (7b)

whereMG is the following circulant matrix [22]:

MG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(0) G(∆) G(2∆) · · · G((N − 1)∆)

G(∆) G(0) G(∆) · · · G((N − 2)∆)

G(2∆) G(∆) G(0) · · · G((N − 3)∆)
...

...
...

. . .
...

G((N − 1)∆) G((N − 2)∆) G((N − 3)∆) · · · G(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

where N is the number of pixel in a row that are used to compute the deconvolution, ∆ is
the detector pixel size and the terms G(n∆) represent the PSF evaluated at the x coordinate
corresponding to the width of the n-th adjacent pixels in a row of the detector.



Research Article Vol. 33, No. 7 / 7 Apr 2025 / Optics Express 16194

The deconvolution process is equivalent to inverting MG and multiplying M−1
G by the

projections. SinceMG is a circulant matrix, it can be efficiently inverted using the Discrete
Fourier Transform (DFT) matrix, a fundamental tool in signal processing, defined as:

Q =
1
√

N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

where N × N is the size of the matrix, and ω = e−2πi/N is the complex N-th root of unity.

4.1. Inversion in the Fourier domain

The matrix inversion is computed in the Fourier domain:

D = Q · MG · Q†, (10)

where the symbols · and † represent the matrix product and the conjugate transpose operator,
respectively. It can be observed that the matrix D is diagonal in the Fourier domain [22].
Consequently, the inverse ofMG is given by:

M−1
G = Q†·D−1 · Q, (11)

where D−1 is easily computed by inverting each diagonal element of the matrix D. Using this,
the XT-removed projection P0[i, j], is obtained as:

P0
F[i, j] =

N∑︂
k=1
M−1

G [i, k]PF[k, j] (12a)

P0
S[i, j] =

N∑︂
k=1
M−1

G [i, k]PS[k, j] (12b)

When applied to all pixels in a detector row, the discrete solution provided above (FFT-
deconvolution) suffers from the same noise-sensitivity issues described in section (3), which
in that case have been reduced by filtering the spectrum with Eq. (5). In the next section, we
explain how the circulant-matrix deconvolution approach (CM) can be made more robust by
dividing the projections into smaller segments, processing each segment independently, then
recombining them to reconstruct the entire deconvolved row of pixels. This iterative process is
applied across the entire detector, enabling the sampling of the function G(x) only in regions
where its magnitude is sufficiently large. This approach reduces the impact of noise on the
deconvolution while preserving high-frequency information, which would otherwise be lost when
using the filter described in Eq. (5).

4.2. Efficient implementation of the circulant matrix-based deconvolution

The described approach is highly effective for deblurring images when the blur kernel is known
or can be accurately estimated, in which case it is particularly well-suited for applications in
optical and medical imaging, where high-fidelity image restoration is crucial. As mentioned in
the previous section, to enhance the robustness of the deconvolution, it is preferable to apply the
algorithm to smaller sections of pixels rather than to the entire row at once.
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Let Nx represent the total number of pixels in each row of the detector. The algorithm begins
by evaluating Eq. (8), Eq. (9), Eq. (10) and Eq. (11) for a section of N pixels ( with N<Nx).
Within this section, a smaller window of Nw pixels, centered within the N pixels, is selected
for the deconvolution. The process is then iterated while shifting by Nw pixels at each step,
until the entire row is covered (Nx pixels). To enhance the robustness of the deconvolution, the
entire process is repeated three times with different values of Nw and N, and the results for each
pixel are averaged. We set three values for N, denoted as N1, N2 and N3, respectively. Similarly,
we defined three values for Nw, denoted as Nw1 , Nw2 and Nw3 . We have observed heuristically
that setting the section length N ≈ 35 and window length Nw ≈ 25, results in high-quality
deconvolution. Based on multiple tests, we suggest using these values, as they remain consistent
when the PSF width σ is less than twice the pixel size. However, for larger values of σ, larger N
and Nw values may be required to ensure accurate deconvolution. Building on this observation,
we chose the parameters for the three iterations to remain close to these values while ensuring
distinct step sizes. Specifically, we configured the CM-deconvolution scheme with parameters
[N1, N2, N3] = [32, 34, 36] and [Nw1 , Nw2 , Nw3 ] = [25, 27, 28]. Below we provide the pseudo-code
illustrating this process, where the term [1 : N] represents the array of indices from 1 to N
(included), and zeros(size(P)) refers to a null matrix with the same dimensions as the matrix P:

Pseudo-code CM deconvolution:

1. Initialization of P0 = zeros(size(P))

2. For i from 1 to 3 (three repetitions for robustness):

(a) Initialization of the the temporary deconvolved projection for the i-th repetition:
P0

r = zeros(size(P));
(b) Update of the pixels segment length: N = Ni

(c) Update of the internal pixel segment length: Nw = Nwi

(d) Computation of the circulant matrixMG from G(x) of dimension N × N
(e) Computation of DFT matrix Q of dimension N × N
(f) Computation of the diagonal matrix D = Q · MG · Q†,
(g) Comptutation of the inverse matrix D−1(h, k) = 1

D(h,k) , if h = k, 0 otherwise

(h) Computation of the inverse matrixM−1
G = Q† · D−1 · Q†

(h) Computation of the number of segments for i-th: Nseg =
⌊︂

Nx−N
Nw

⌋︂
+ 1

(j) First index of the internal segment of pixels: iw0 =
⌈︂

N−Nw
2

⌉︂
(k) Local indices of the internal segment of pixels within the current segment of pixels:

Iw = iw0 + [1 : Nw];
(l) For is from 1 to Nseg:

i. Extraction of the iths segment indices Is = [1 : N] + (is − 1)Nw;
ii. Extraction of the iths local indices: Iws = Iw + (is − 1)Nw;
iii. Computation of the deconvolved segment: Ptmp =M

−1
G · Ps[IS, j]

iv. Update the deconvolved projection P0
r [Iws , j] = Ptmp[Iw]

(m) Accumulate result across repetitions: P0 ← P0 + P0
r

(3) Average results: P0 ← P0

3
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A visual representation of the index arrangement corresponding to the pseudo-code described
above is shown in Fig. 4.

It is worth noting that the same procedure described above using CM could have been performed
by applying Fast Fourier Transforms (FFT) to the row sections of pixels. However, although
the computation of the Fourier transform is generally considerably faster when using the FFT
algorithm compared to CM, this is not the case in low-dimensional scenarios, such as the one
discussed here, where the DFT matrix dimension is approximately 30 × 30. In this situation, we
have heuristically observed that the computation is around two times faster with CM compared to
FFT.

To highlight the differences between the CM-deconvolution algorithm described above and the
FFT-deconvolution algorithm of Eq. (5), Fig. 5 compares the performance of the two algorithms

Fig. 4. Schematic representation of the index arrangement in the CM-deconvolution
algorithm for a single repetition, with Nx = 20, N = 7, and Nw = 4. Under these parameter
settings, iw0 = 2, and the algorithm performs Nseg = 4 iterations in total. In each iteration is,
the red-shaded region represents the segment of indices IS, while the blue-shaded region
corresponds to the local segment of indices IWS . The deconvolution is applied over IS, but
only the pixels within IWS are stored. In this configuration, the first two and last two pixels
of the output are not updated by the deconvolution algorithm and they are set to zero.
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Fig. 5. a) Raw projections of simulations without XT, with XT removed with the FFT-
deconvolution and XT removed with CM approach. b) Relative error of the three approaches
versus the ideal non-XT case.

on the same sample used in Fig. 3. However, instead of presenting the retrieved refraction, this
comparison focuses on the raw projections, inclusive of the detector columns "obscured" by the
skipped mask.

From Fig. 5(a), it can be observed that the CM-deconvolution results align more closely with the
ideal case in which XT was not included in the simulations compared to the FFT-deconvolution.
The relative error of the uncorrected XT case and the FFT and CM deconvolution algorithms
versus the ideal "non-XT" case are shown in Fig. 5(b).

Although the CM algorithm produces a reduced error compared to the other methods, the
error remains high for the obscured pixels. However, this is not problematic, as these pixels
correspond to the skipped regions, where the projection values are nearly zero and which are
ultimately removed from the images. As a result, an error of 50% in these pixels is negligible
compared to the signal from the open pixels.

5. Experimental data analysis

In this section, we analyze two experimental datasets acquired at the Advanced X-Ray Imaging
(AXIm) Labs at University College London. Each acquisition involved 8 dithering steps. The
source-to-M1 distance, source-to-M2 distance and aperture sizes of M1 and M2 were set as the
simulations described in Fig. 1. All samples were placed within a plastic container with a
diameter of 1.6 cm and a height of 5 cm, corresponding to the largest annular region shown in all
figures in the next section.

We used a Hamamatsu CMOS Flat Panel Sensor (C9732DK) with a 50µm pixel size and
direct deposition CsI scintillator. The source was a Rigaku MicroMax-007HF with Molybdenum
Anode and approximately 70µm ×100µm focal spot. The PSF was estimated as spilling ∼40%,
∼12%, ∼2% signal to the first, second and third adjacent pixels, respectively.
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5.1. Analysis on a plastic rod sample

We applied the presented deconvolution algorithms to a CT acquisition of a polyethylene rod with
a diameter of 6.6 mm and a height of 4 cm. The illumination curve for this experimental data was
set to match the simulation described in Fig. 1. 720 projections were acquired at equally spaced
angles over a 360-degree range. Plots a) and c) in Fig. 6 show the reconstructed distributions of δ
and β for the central slice of the cylinder in the z − x plane, deconvolved using the CM method.
It can be noted that β-map is noisier than the corresponding δ-map, likely due to the lower
signal intensity of the former. To evaluate the deconvolution performance, we reconstructed the
distributions of δ and β for the XT-affected case, CM deconvolved case (see Supplement 1 for
analogous images generated using a deconvolution algorithm based on a deep learning model
(see Fig. (S2)). From each reconstruction, we extracted 100 segments of 41 pixels each for
further analysis. These linear segments were centered on the edge circumference of the plastic
rod, with their radial orientations spanning the entire circle. In particular, the 100 segments
correspond to 100 angles evenly distributed over 2π. An example of a single directional segment
is illustrated by the two red lines crossing the rod in images a) and c). Since the plastic cylinder
has a homogeneous refractive index and is surrounded by air, each segment is expected to result
in a step-like line, approximately equal to zero in the regions corresponding to air. In plots b) and
d), we show the average of all of these segments for the δ and β, respectively. It is evident that
the XT-affected reconstructions appears smoothed at the edges, consistently with the simulations
shown in Fig. 1 and Fig. 2. In contrast, the deconvolved cases successfully restore the expected
sharp edge profile.

Fig. 6. a) and c) δ-map and β-map slices of the CM-deconvolved projections, respectively.
b) and d) line plots corresponding to the average of 100 segments of 41 pixels crossing
the edge between the plastic cylinder and air, for the XT-affected, FFT-deconvolved and
CM-deconvolved cases, respectively.

https://doi.org/10.6084/m9.figshare.28633346
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5.2. Analysis of a post-mortem mouse skull sample

This section analyzes XT-affected and deconvolved CT acquisitions of a sample featuring a
mouse skull containing the intact brain. For this experiment, five points were used along the
illumination curve, corresponding to 14%, 58%, 100%, 58% and 14% of its maximum. For
the mouse sample, 2000 projections were acquired at equally spaced angles over a 360-degree
range. The animal tissue sample was provided by the Pauws lab as part of a UK Home Office
Project License (number: PP8161503) under the UK Animals (Scientific Procedures) Act 1986.
The animal procedure complied with the ARRIVE guidelines and was performed under the
supervision of UCL Biological Services. The specimen is a postnatal day 21 (P21) wild-type
(CD-1 strain) mouse. Figure 7 shows reconstructed δ-map slice for an intact mouse skull. The
green region highlights the edge of the container, where the XT effect is most apparent. The
green region is zoomed in images b) and c), corresponding to the XT-affected and CM cases,
respectively, demonstrating that CM deconvolution effectively eliminate the XT artifact. Please
refer to Supplement 1 for analogous images generated using a deep learning-based deconvolution
algorithm (see Fig. (S3) and Fig. (S4)), along with additional δ-map slices for a mouse skull
without the brain. We analyzed a region containing detailed structures of the skull and brain.
While the results for this sample suggests that the CM-deconvolution method is robust in dealing
with noise, further investigations would be needed for a more comprehensive noise assessment.

Fig. 7. δ-map of a mouse skull containing the intact brain, from XT-affected data and data
deconvolved with the CM method.

Remarkably, to the best of our knowledge, this is the first instance of a soft-tissue details in a
murine brain being observed in a laboratory-based phase constrast CT reconstruction of an intact
skull. This region, highlighted by a red box, is zoomed in images d), and e), corresponding to
the XT-affected, and CM cases, respectively. To compare the performance of the deconvolution
approaches also on a specimen with higher inherent contrast, we also scanned a mouse skull
from which the brain had been removed. Results are presented in Supplement 1.

https://doi.org/10.6084/m9.figshare.28633346
https://doi.org/10.6084/m9.figshare.28633346
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5.3. Computational time

In this section we discuss the computational time related to compute the CT-reconstruction
of the mouse sample described in section (5.2). We compare the reconstruction without
deconvolution correction to those using the two deconvolution methods introduced in this article:
FFT-deconvolution and CM-deconvolution. All computations were carried out using a computer
with an NVIDIA A6000 48GB GPU, and two CPU AMD EPYC 7453 with 28-Cores. Both
the FFT-deconvolution and the CM-deconvolution employed a vectorized implementation in
MATLAB (Matlab R2021b), run on the system’s CPUs.

The computational time to retrieve the information about δ and β using Eqs. (2), which are
common to all methods, involves Gaussian fitting of the illumination curve for all detector
pixels across 2,000 acquisition angles and 8 dithering steps, taking approximately 4 hours.
CT reconstructions were performed using the MATLAB ASTRA Toolbox with the Feldkamp-
Davis-Kress (FDK) algorithm executed on the GPU. The deconvolution of raw projections
using FFT-deconvolution and CM-deconvolution took approximately 24 minutes and 52 minutes,
respectively. CM-deconvolution is slower than FFT-deconvolution because it involves three
repetitions and operates on scanned sections rather than entire rows of pixels, leading to a
considerable increase in the computational load. Notably, the average computation time for each
repetition is approximately 17 minutes and 20 seconds. This means that, without averaging,
CM-deconvolution would actually be faster than FFT-deconvolution. Performing the CM-
deconvolution with the three repetitions adds approximately 20% to the total computation time
of the CT reconstruction without deconvolution.

6. Conclusion

In this study, we addressed the challenge of crosstalk (XT) in x-ray phase contrast imaging
(XPCI) systems utilizing the edge illumination (EI) technique. Despite significant advancements
in EI, XT remains a critical issue that reduces the accuracy and clarity of reconstructed images,
particularly at interfaces and fine structures, where the benefits of phase contrast are greatest.
By analyzing the limitations of existing approaches and introducing appropriate deconvolution
methods, we have provided a robust solution to mitigate XT effects.

Initially, we demonstrated that XT persists even in state-of-the-art EI systems with skipped
masks, leading to blurring and quantitative inaccuracies in the retrieved phase and attenuation
signals. A detailed mathematical model was used to illustrate the non-linear effects of XT
on projection data and its influence on image reconstruction. The convolution-based nature
of XT was systematically analyzed, revealing that both sample and flat projections must be
deconvolved to achieve accurate retrieval. We presented a FFT-based deconvolution algorithm
accompanied by an equivalent but more robust version that makes use of circulant matrices (CM).
The FFT-deconvolution utilized spectral filtering to mitigate noise amplification, while the CM
method leveraged linear algebra techniques for enhanced stability and precision.

Validations using simulated and experimental data, the latter involving a polyethylene rod
phantom and a mouse skull with the intact brain, demonstrated the effectiveness of the proposed
methods. CM-based deconvolutions significantly reduced XT artifacts, restoring edge sharpness
and improving contrast without introducing additional noise. In what is to the best of our
knowledge the first time, details of the soft tissue in a mouse brain were visualized in a laboratory-
based phase-contrast CT reconstruction of an intact skull. While soft tissues are visible also
in XT-affected reconstruction, their visibility is improved in CM corrected ones. Our results
confirm that the CM method is highly effective in addressing XT with acceptable computational
overheads. This technique is robust and applicable to diverse experimental setups, making it a
valuable tool for enhancing XPCI imaging quality.
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